Quiz

Algebra

Typical Exam Questions

×
Home
About
Subjects
Contact
Life After Matric
Coursemaccon Academy

is a Subsidiary of

Coursemaccon Business Solutions

Quiz

Algebra Score: 0/10
1. Solve for x :   ( x 2 - 4 ) ( x - 2 ) = 0

A. x = 4   or   x = 2
B. x = ± 2   or   x = 2
C. x = - 4   or   x = 4
D. None of the above
2. Solve for x :   ( x - 1 ) ( x + 8 ) = 10

A. x = 1   or   x = - 5 4
B. x = 11   or   x = 2
C. x = - 9   or   x = 2
D. None of the above
3. Solve for x :   4x 2 + 11x + 4 = 0
(Leave your answer correct to TWO decimal places IF NECESSARY)

A. x = 0.43   or   x = 2.32
B. x = 0   or   x = 2
C. x = - 0.43   or   x = - 2.32
D. None of the above
4. Solve for x :   - x 2 ≤ 4 - 5x

A. x ≤ 1   or   x ≥ 4
B. 1 ≤ x ≤ 4
C. 1 ≥ x ≥ 4
D. None of the above
5. Solve for x :   6x < 3x 2

A. x < 0  or  x > 2
B. 0 < x < 2
C. x < - 2  or  x > 0
D. None of the above
6. Solve for  x  and  y  if   y = x + 2 and x 2 + y 2 = 20

6. Solve for  x  and  y  if   y = x + 2 and x 2 + y 2 = 20

6. Solve for  x  and  y  if

   y = x + 2 and x 2 + y 2 = 20

A. (x ; y) = ( - 2 ; 0 ) and (x ; y) = ( 4 ; 6 )
B. (x ; y) = ( 2 ; 4 ) and (x ; y) = ( 4 ; 6 )
C. (x ; y) = ( 2 ; 4 ) and (x ; y) = ( - 4 ; - 2 )
D. None of the above
7. Solve for  x  and  y  if   2x - y - 3 = 0 and x 2 + 5xy + y 2 = 15

7. Solve for  x  and  y  if   2x - y - 3 = 0 and x 2 + 5xy + y 2 = 15

7. Solve for  x  and  y  if

   2x - y - 3 = 0 and x 2 + 5xy + y 2 = 15

A. (x ; y) = ( - 1 5  ; - 17 5 ) and (x ; y) = ( 2 ; 1 )
B. (x ; y) = ( 1 5  ;  17 5 ) and (x ; y) = ( 2 ; 1 )
C. (x ; y) = ( - 5 ; - 5 17 ) and (x ; y) = ( 2 ; 1 )
D. None of the above
8. Solve for  x  and  y  if    2x 1 + y = 1 and ( 3x - y ) ( x + y ) = 0

8. Solve for  x  and  y  if    2x 1 + y = 1 and ( 3x - y ) ( x + y ) = 0

8. Solve for  x  and  y  if

    2x 1 + y = 1 and ( 3x - y ) ( x + y ) = 0

A. (x ; y) = ( 1 3  ; - 1 3 ) and (x ; y) = ( - 1 ; - 3 )
B. (x ; y) = ( - 1 3  ;  1 3 ) and (x ; y) = ( - 1 ; - 3 )
C. (x ; y) = ( 3 ; - 3 ) and (x ; y) = ( - 1 ; - 3 )
D. None of the above
9. Given:   x  =  ± b 2 – 9 - 2

  Determine the value(s) of  b  for which  x  is a Real Number.

A. b ≥ - 3  or  b ≤ 3
B. - 3 ≤ b ≤ 3
C. b ≤ - 3  or  b ≥ 3
D. None of the above
10. The roots of a quadratic equation are given by:   x  =  - 2  ± 13 – 2k 3

10. The roots of a quadratic equation are given by:   x  =  - 2  ± 13 – 2k 3

10. The roots of a quadratic equation are given by:

    x  =  - 2  ± 13 – 2k 3

  For how many values of k > 0 will the roots be Rational ?

A. 2
B. 3
C. 4
D. None of the above

What does HTML stand for?

Quiz Results

0%
Your score is 0 out of 10

Solutions

Algebra Question 1 of 10
1. Solve for x :   ( x 2 - 4 ) ( x - 2 ) = 0

A. x = 4   or   x = 2
B. x = ± 2   or   x = 2
C. x = - 4   or   x = 4
D. None of the above
Correct Answer
Option B
Detailed Solution

Solution Details

Given   ( x 2 - 4 ) ( x - 2 ) = 0

•   ( x 2 - 4 ) ( x - 2 ) = 0

•   ( x 2 - 4 ) = 0     or     ( x - 2 ) = 0

∴   x =  ± 2     or    x = 2


For more info please see

Algebra

Algebra Question 2 of 10
2. Solve for x :   ( x - 1 ) ( x + 8 ) = 10

A. x = 1   or   x = - 5 4
B. x = 11   or   x = 2
C. x = - 9   or   x = 2
D. None of the above
Correct Answer
Option C
Detailed Solution

Solution Details

Given   ( x - 1 ) ( x + 8 ) = 10

•   ( x - 1 ) ( x + 8 ) = 10

•   x 2 + 7x - 8 = 10

•   x 2 + 7x - 18 = 0

•   ( x + 9 ) ( x – 2 ) = 0

•   ( x + 9 ) = 0     or     ( x – 2 ) = 0

∴   x = – 9     or    x = 2

For more info please see

Algebra

Algebra Question 3 of 10
3. Solve for x :   4x 2 + 11x + 4 = 0
(Leave your answer correct to TWO decimal places IF NECESSARY)

A. x = 0.43   or   x = 2.32
B. x = 0   or   x = 2
C. x = - 0.43   or   x = - 2.32
D. None of the above
Correct Answer
Option C
Detailed Solution

Solution Details

Given   4x 2 + 11x + 4 = 0

•   4x 2 + 11x + 4 = 0

•   x  =  – b  ± b 2 – 4ac 2a       The equation cannot be factorised so we use the quadratic formula


•   x  =  – 11  ± ( 11 ) 2 – 4 ( 4 ) ( 4 ) 2 ( 4 )   =   – 11  ± 57 8


•   x =  – 11  – 57 8     or    x =  – 11  + 57 8


∴   x = – 0.43     or    x = – 2.32

For more info please see

Algebra

Given   4x 2 + 11x + 4 = 0

•   4x 2 + 11x + 4 = 0

•   x  =  – b  ± b 2 – 4ac 2a

The equation cannot be factorised so we use the quadratic formula


•   x  =  – 11  ± ( 11 ) 2 – 4 ( 4 ) ( 4 ) 2 ( 4 )

      =   – 11  ± 57 8


•   x =  – 11  – 57 8     or

   x =  – 11  + 57 8


∴   x = – 0.43     or    x = – 2.32

For more info please see

Algebra

Algebra Question 4 of 10
4. Solve for x :   - x 2 ≤ 4 - 5x

A. x ≤ 1   or   x ≥ 4
B. 1 ≤ x ≤ 4
C. 1 ≥ x ≥ 4
D. None of the above
Correct Answer
Option A
Detailed Solution

Solution Details

Given   - x 2 ≤ 4 - 5x

•   - x 2 ≤ 4 - 5x

•   x 2 - 5x + 4 ≥ 0

•   ( x - 1 ) ( x – 4 ) ≥ 0

•   x 2 - 5x + 4 = 0  at  x = 1  and  x = 4
+0-0+

||||
|14|
  We have to find values of x where  x 2 - 5x + 4 ≥ 0


∴    x ≤ 1     or     x ≥ 4

For more info please see

Algebra

Algebra Question 5 of 10
5. Solve for x :   6x < 3x 2

A. x < 0  or  x > 2
B. 0 < x < 2
C. x < - 2  or  x > 0
D. None of the above
Correct Answer
Option A
Detailed Solution

Solution Details

Given   6x < 3x 2

•   6x < 3x 2

•   3x 2 - 6x > 0

•   3x ( x – 2 ) > 0

•   3x 2 - 6x = 0   at   x = 0  and  x = 2
+0-0+

||||
|02|
  We have to find values of x where  3x 2 - 6x > 0


∴    x < 0     or     x > 2

For more info please see

Algebra

Algebra Question 6 of 10
6. Solve for  x  and  y  if   y = x + 2 and x 2 + y 2 = 20

6. Solve for  x  and  y  if   y = x + 2 and x 2 + y 2 = 20

6. Solve for  x  and  y  if

   y = x + 2 and x 2 + y 2 = 20

A. (x ; y) = ( - 2 ; 0 ) and (x ; y) = ( 4 ; 6 )
B. (x ; y) = ( 2 ; 4 ) and (x ; y) = ( 4 ; 6 )
C. (x ; y) = ( 2 ; 4 ) and (x ; y) = ( - 4 ; - 2 )
D. None of the above
Correct Answer
Option C
Detailed Solution

Solution Details

Given   y = x + 2 and x 2 + y 2 = 20

•   y = x + 2   ................................... 1

   x 2 + y 2 = 20
  ................................... 2

•   Substitute  1  into  2

   x 2 + ( x + 2 ) 2 = 20

   x 2 + x 2 + 4x + 4 = 20

   2x 2 + 4x - 16 = 0

   x 2 + 2x - 8 = 0

   ( x + 4 ) ( x - 2 ) = 0

   ( x + 4 ) = 0     or     ( x - 2 ) = 0

∴   x = - 4     or    x = 2

• Substitute the values of x into  1  to get the values of y


   y = x + 2


   For   x = - 4

   y = - 4 + 2 = - 2


   For   x = 2

   y = 2 + 2 = 4

∴   ( x ; y )  =  ( - 4 ; - 2 )   and   ( x ; y )  =  ( 2 ; 4 )

For more info please see

Algebra

Given   y = x + 2 and x 2 + y 2 = 20

•   y = x + 2   ................................... 1

   x 2 + y 2 = 20
  ................................... 2

•   Substitute  1  into  2

   x 2 + ( x + 2 ) 2 = 20

   x 2 + x 2 + 4x + 4 = 20

   2x 2 + 4x - 16 = 0

   x 2 + 2x - 8 = 0

   ( x + 4 ) ( x - 2 ) = 0

   ( x + 4 ) = 0     or     ( x - 2 ) = 0

∴   x = - 4     or    x = 2

• Substitute the values of x into  1  to get the values of y


   y = x + 2


   For   x = - 4

   y = - 4 + 2 = - 2


   For   x = 2

   y = 2 + 2 = 4

∴   ( x ; y )  =  ( - 4 ; - 2 )   and

   ( x ; y )  =  ( 2 ; 4 )

For more info please see

Algebra

Algebra Question 7 of 10
7. Solve for  x  and  y  if   2x - y - 3 = 0 and x 2 + 5xy + y 2 = 15

7. Solve for  x  and  y  if   2x - y - 3 = 0 and x 2 + 5xy + y 2 = 15

7. Solve for  x  and  y  if

   2x - y - 3 = 0 and x 2 + 5xy + y 2 = 15

A. (x ; y) = ( - 1 5  ; - 17 5 ) and (x ; y) = ( 2 ; 1 )
B. (x ; y) = ( 1 5  ;  17 5 ) and (x ; y) = ( 2 ; 1 )
C. (x ; y) = ( - 5 ; - 5 17 ) and (x ; y) = ( 2 ; 1 )
D. None of the above
Correct Answer
Option A
Detailed Solution

Solution Details

Given   2x - y - 3 = 0 and x 2 + 5xy + y 2 = 15

•   2x - y - 3 = 0   ................................... 1

   x 2 + 5xy + y 2 = 15
  ................................... 2


•   From  1  we have

   y = 2x - 3   ................................... 3


•   Substitute  3  into  2

   x 2 + 5x ( 2x - 3 ) + ( 2x - 3 ) 2 = 15

   x 2 + 10x 2 - 15x + 4x 2 - 12x + 9 = 15

   15x 2 - 27x - 6 = 0

   ( 5x + 1 ) ( 3x - 6 ) = 0

   ( 5x + 1 ) = 0     or     ( 3x - 6 ) = 0

∴   x = - 1 5     or    x = 2

• Substitute the values of x into  3  to get the values of y


   y = 2x - 3


   For   x = - 1 5

   y = 2 ( - 1 5 ) - 3 = - 17 5


   For   x = 2

   y = 2 ( 2 ) - 3 = 1

∴   ( x ; y )  =  ( - 1 5  ;  - 17 5 )   and   ( x ; y )  =  ( 2 ; 1 )

For more info please see

Algebra

Given  2x - y - 3 = 0 and x2 + 5xy + y2 = 15

•   2x - y - 3 = 0   ........................ 1

   x 2 + 5xy + y 2 = 15
  ........................ 2


•   From  1  we have

   y = 2x - 3   ........................ 3


•   Substitute  3  into  2

   x 2 + 5x ( 2x - 3 ) + ( 2x - 3 ) 2 = 15

   x 2 + 10x 2 - 15x + 4x 2 - 12x + 9 = 15

   15x 2 - 27x - 6 = 0

   ( 5x + 1 ) ( 3x - 6 ) = 0

   ( 5x + 1 ) = 0     or     ( 3x - 6 ) = 0

∴   x = - 1 5     or    x = 2

• Substitute the values of x into  3  to get the values of y


   y = 2x - 3


   For   x = - 1 5

   y = 2 ( - 1 5 ) - 3 = - 17 5


   For   x = 2

   y = 2 ( 2 ) - 3 = 1

∴   ( x ; y )  =  ( - 1 5  ;  - 17 5 )   and

   ( x ; y )  =  ( 2 ; 1 )

For more info please see

Algebra

Algebra Question 8 of 10
8. Solve for  x  and  y  if    2x 1 + y = 1 and ( 3x - y ) ( x + y ) = 0

8. Solve for  x  and  y  if    2x 1 + y = 1 and ( 3x - y ) ( x + y ) = 0

8. Solve for  x  and  y  if

   2x 1 + y = 1 and ( 3x - y ) ( x + y ) = 0

A. (x ; y) = ( 1 3  ; - 1 3 ) and (x ; y) = ( - 1 ; - 3 )
B. (x ; y) = ( - 1 3  ;  1 3 ) and (x ; y) = ( - 1 ; - 3 )
C. (x ; y) = ( 3 ; - 3 ) and (x ; y) = ( - 1 ; - 3 )
D. None of the above
Correct Answer
Option A
Detailed Solution

Solution Details

Given   2x 1 + y = 1 and ( 3x - y ) ( x + y ) = 0

•   2x 1 + y = 1   ................................... 1

   ( 3x - y ) ( x + y ) = 0
  ................................... 2


•   From  1  we have

   y = 2x - 1   ................................... 3


•   Substitute  3  into  2

   ( 3x - 2x + 1 ) ( x + 2x - 1 ) = 0

   ( x + 1 ) ( 3x - 1 ) = 0

   ( x + 1 ) = 0     or     ( 3x - 1 ) = 0

∴   x = - 1     or    x =  1 3

• Substitute the values of x into  3  to get the values of y


   y = 2x - 1


   For   x = - 1

   y = 2 ( - 1 ) - 1 = - 3


   For   x =  1 3

   y = 2 ( 1 3 ) - 1 = - 1 3

∴   ( x ; y )  =  ( 1 3  ;  - 1 3 )   and   ( x ; y )  =  ( - 1 ; - 3 )

For more info please see

Algebra

Given   2x 1 + y = 1 and ( 3x - y ) ( x + y ) = 0

•   2x 1 + y = 1   ........................ 1

   ( 3x - y ) ( x + y ) = 0
  ........................ 2


•   From  1  we have

   y = 2x - 1   ........................ 3


•   Substitute  3  into  2

   ( 3x - 2x + 1 ) ( x + 2x - 1 ) = 0

   ( x + 1 ) ( 3x - 1 ) = 0

   ( x + 1 ) = 0     or     ( 3x - 1 ) = 0

∴   x = - 1     or    x =  1 3

• Substitute the values of x into  3  to get the values of y


   y = 2x - 1


   For   x = - 1

   y = 2 ( - 1 ) - 1 = - 3


   For   x =  1 3

   y = 2 ( 1 3 ) - 1 = - 1 3

∴   ( x ; y )  =  ( 1 3  ;  - 1 3 )   and

   ( x ; y )  =  ( - 1 ; - 3 )

For more info please see

Algebra

Algebra Question 9 of 10

9. Given:   x  =  ± b 2 – 9 - 2

 Determine the value(s) of  b  for which  x  is a Real Number.

A. b ≥ - 3  or  b ≤ 3
B. - 3 ≤ b ≤ 3
C. b ≤ - 3  or  b ≥ 3
D. None of the above
Correct Answer
Option C
Detailed Solution

Solution Details

Given   x  =  ± b 2 – 9 - 2

•   x  =  ± b 2 – 9 - 2

•  b 2 – 9  ≥  0

•  ( b - 3 ) ( b + 3 )  ≥  0

+0-0+

||||
|-33|

∴  b ≤ - 3     or     b ≥ 3

For more info please see

Algebra

Algebra Question 10 of 10
10. The roots of a quadratic equation are given by:   x  =  - 2  ± 13 – 2k 3

10. The roots of a quadratic equation are given by:   x  =  - 2  ± 13 – 2k 3

10. The roots of a quadratic equation are given by:

    x  =  - 2  ± 13 – 2k 3

  For how many values of k > 0 will the roots be Rational ?

A. 2
B. 3
C. 4
D. None of the above
Correct Answer
Option C
Detailed Solution

Solution Details

Given   x  =  - 2  ± 13 – 2k 3

•   x  =  - 2  ± 13 – 2k 3

•  The roots of a quadratic equation are Rational if  Δ = 0,  or if  Δ  is a Perfect Square


∴  13 – 2k  =  0

∴  k  =  13 2

•  And there are three numbers that are less than 13 which are Perfect Squares. They are 1, 4 and 9.


∴  13 – 2k  =  1  or  13 – 2k  =  4  or  13 – 2k  =  9

∴  k  =  6  or   k  =  9 2   or   k  =  4 2

∴   The roots are Rational if k ∈ ( 4 2  ;  9 2  ;  13 2  ;  6 )

∴   There are 4 values  k > 0  for which the roots are Rational

For more info please see

Algebra

Given   x  =  - 2  ± 13 – 2k 3

•   x  =  - 2  ± 13 – 2k 3

•  The roots of a quadratic equation are Rational if  Δ = 0,  or if  Δ  is a Perfect Square


∴  13 – 2k  =  0

∴  k  =  13 2

•  And there are three numbers that are less than 13 which are Perfect Squares. They are 1, 4 and 9.


∴  13 – 2k  =  1  or  13 – 2k  =  4  or  13 – 2k  =  9

∴  k  =  6  or   k  =  9 2   or   k  =  4 2

∴   The roots are Rational if

   k ∈ ( 4 2  ;  9 2  ;  13 2  ;  6 )

∴   There are 4 values  k > 0  for which the roots are Rational

For more info please see

Algebra